基本信息
书名:数理统计学导论(英文版.第7版)
定价:99
作者:(美)霍格(Hogg, R. V.)等著
出版社:机械工业出版社
出版日期:2012-(咨询特价)
ISBN(咨询特价)
字数:
页码:694
版次:1
装帧:平装
开本:16开
商品重量:
编辑推荐
暂无相关内容
目录
Preface 1 Probability and Distributio1.1 Introduction1.2 Set Theory1.3 The Probability Set Function1.4 Conditional Probability and Independence1.5 Random Variables1.6 Discrete Random Variables1.6.1 naformatio1.7 Continuous Random Variables1.7.1 naDSformatio1.8 Expectation of a Random Variable1.9 Some Special Expectatio1. Important Inequalities2 Multivariate Distributio2.1 Distributio of Two Random Variables2.1.1Expectation2.2 naformatio:Bivariate Random Variables2.3 Conditional Distributio and Expectatio2.4 The Correlation Coefficient2.5 Independent Random Variables2.6 Exteion to Several Random Variables2.6.1*Multivariate Variance-Covariance Matrix2.7 naformatio for Several Random Variables2.8 Linear Combinatio of Random Variables3 Some Special Distributio3.1 The Binomial and Related Distributio3.2 The Poisson Distribution3.3 The Г,χ2,andβ Distributio3.4 The Normal Distribution3.4.1Contaminated Normals3.5 The Multivariate Normal Distribution3.5.1*Applicatio3.6 t-and F-Distributio3.6.1 The t-distribution3.6.2 The F-distribution3.6.3 Student’S Theorem3.7 Mixture Distributio 4 Some Elementary Statistical Inferences4.1 Sampling and Statistics4.1.1 Histogram Estimates of pmfs and pdfs4.2 Confidence Intervals4.2.1Confidence Intervals for Difference in Mea4.2.2Confidence Interval for Difference in Proportio4.3 Confidence Intervals for Paramete of Discrete Distributio4.4 CIrder Statistics4.4.1Quantiles4.4.2Confidence Intervals for Quantiles4.5 Introduction to Hypothesis Testing4.6 Additional Comments About Statistical Tests4.7 Chi-Square Tests4.8 The Method of Monte Carlo4.8.1 Accept-Reject Generation Algorithm4.9 Bootstrap Procedures4.9.1 Percentile Bootstrap Confidence Intervals4.9.2Bootstrap Testing Procedures4. *Tolerance Limits for Distributio5 Coistency and Limiting Distributio5.1 Convergence in Probability5.2 Convergence in Distribution5.2.1Bounded in Probability5.2.2 △-Method5.2.3 Moment Generating Function Technique5.3 Central Limit Theorem5.4 *Exteio to Multivariate Distributio6 Maximum Likelihood Methods6.1 Maximum Likeli.hood Estimation6.2 Rao-Cram6r Lower Bound and E伍ciency6.3 Maximum Likelihood Tests6.4 Multiparameter Case:Estimation6.5 Multiparameter Case:Testing6.6 The EM Algorithm7 Sufficiency7.1 Measures of Quality of Estimato7.2 A Su伍cient Statistic for a Parameter7.3 Properties of a Sufficient Statistic7.4 Completeness and Uniqueness7.5 The Exponential Class of Distributio7.6 Functio of a Parameter7.7 The Cuse of Several Paramete7.8 Minimal Sufficiency and Ancillary Statistics7.9 Sufficiency,Completeness.and Independence8 Optimal Tests of Hypotheses8.1 Most Powerful Tests8.2 Uniformly Most Powerful Tests8.3 Likelihood Ratio Tests8.4 The Sequential Probability Ratio Test8.5Minimax and Classification Procedures8.5.1 Minimax Procedures8.5.2 Classification9 Inferences About Normal MOdels9.1 Quadratic Forms9.2 One-Way ANOVA9.3 Noncentralχ2and F-Distributio9.4 Multiple Compariso9.5 The Analysis of Variance9.6 A Regression Problem9.7 A Test of Independence9.8 The Distributio of Certain Quadratic Forms9.9 The Independence of Certain Quadratic Forills Nonparametric and Robust Statistics.1 Location Models.2 Sample Median and the Sign Test.2.1 Asymptotic Relative Efficiency.2.2 Estimating Equatio Based on the Sign Test.2.3 Confidence Interval for the Median.3 Signed-Rank Wilcoxon.3.1 Asymptotic Relative Emciency.3.2 Estimating Equatio Based on Signed-Rank Wilcoxon.3.3 Confidence Interval for the Median.4 Mann-Whitnev-Wilcoxon Procedure.4.1 Asymptotic Relative Efficiency.4.2 Estimating Equatio Based on the Mann-Whitney-Wilcoxon.4.3 Confidence Interval for the Shift Parameter △.5 General Rank Scores.5.1 Efficacy.5.2 Estimating Equatio Based on General Scores.5.3 0ptimization:Best Estimates.6 Adaptive Procedures.7 Simple Linear Model.8 Measures of Association.8.1 Kendall’S т.8.2 Spearman’S Rho.9 Robust Concepts.9.1 Location Model.9.2 Linear Model11 Bayesian Statistics11.1 Subjective Probability11.2 Bayesian Procedures11.2.1 Prior and Posterior Distributio11.2.2 Bayesian Point Estimation11.2.3 Bayesian Interval Estimation11.2.4 Bayesian Testing Procedures11.2.5 Bayesian Sequential Procedures11.3 More Bayesian Terminology and Ideas11.4 Gibbs Sampler11.5 Modern Bayesian Methods11.5.1 Empirical BayesA Mathematical CommentsA.1 Regularity ConditioA.2 SequencesB R FunctioC Tables of DistributioD Lists of Common DistributioE ReferencesF Awe to Selected ExercisdsIndex
内容提要
这本经典教材保持着一贯的风格,清晰地阐述基本理论,并且为了更好地让读者理解数理统计,还提供了一些重要的背景材料。内容覆咐计和测试方面的古典统计推断方法,并深入介绍了充分性和测试理论,括一致检验和似然率。书中含有大量实例和练习,便于读者理解和巩固所学知识。
文摘
暂无相关内容
作者介绍
暂无相关内容